Wireless Signatures Technology for Position Location

Marty Feuerstein

Presented to

ISART 2004

March 2, 2004

Overview of Wireless Location Signatures Technology

Wireless Location Signatures

- Mobile phone measures and reports signal strengths of neighbor cell control channels
 - Reported mobile assisted handover (MAHO) information
 - Aggregated into network measurement reports (NMRs)
- Every location creates a unique Wireless Location Signature
 - Combine signal strength, delay and temporal behavior
- Components of Wireless Location Signatures technology
 - Predicted Signature Database (PSD) provides highly accurate model of wireless radio environment
 - Location Engine capitalizes on proprietary statistical algorithms to estimate the location of handsets

Wireless Signatures Components

Location Engine

- Process location estimation requests from network
- Produce the position estimate

PSD Manager

- Automatically update PSD for RF network changes
- Track and alarm PSD and network anomalies

PSD Toolkit

- Provision PSD (GIS data, parameters, etc.)
- Maintain location system accuracy
 - Create or refresh PSD with new drive test data
 - Manage PSD for network changes and anomalies
- Test location system accuracy off-line
 - Batch location estimation processing
 - Produce performance statistics

What is a Wireless Signature?

Take Advantage of Three Scales of RF Spatial Variation

GSM E-911 Architecture

Wireless Location Signatures Combined with A-GPS

Wireless Signatures & A-GPS Combined

- When 0-1 satellites are reported by handset, use Wireless Signatures location estimate
- When 2 satellites are reported by handset, create joint Wireless Signatures & A-GPS location estimate
- When >2 satellites reported, A-GPS can suffer from bad geometry or multipath, create joint location estimate

Accuracy improvement over Wireless Signatures alone depends on collection geometry

- If as shown, improvement could be significant
- If TDOA contours aligned with major axis of Wireless Signatures uncertainty, less improvement

Field Trial and OET Test Results

San Jose Testbed: GSM Results

Wireless Location Signatures performance

- Accuracy better than 83 m, 67% of cases
- Accuracy better than 291 m, 95% of cases

San Francisco Testbed: GSM Results

Wireless Location Signatures performance

- Accuracy better than 80 m, 67% of cases
- Accuracy better than 197 m, 95% of cases

Orange UK Field Trial

- Trial area: Bristol, England
 - Urban & suburban areas, with 152 cell sectors
 - Urban inter-site average spacing: 290 m
 - Suburban inter-site average spacing: 720 m
 - Total number of measurement reports: ~ 29,000
- Blind test protocol
- Evaluate accuracy for commercial Location Based Services (LBS)
- Summary of location accuracy results for combined urban & suburban areas
 - 65 m for 67% of cases
 - 263 m for 95% of cases

Orange UK Trial: Urban Results

Wireless Location Signatures performance

- Accuracy better than 48 m, 67% of cases
- Accuracy better than 165 m, 95% of cases

Orange UK Trial: Suburban Results

Wireless Location Signatures performance

- Accuracy better than 81 m, 67% of cases
- Accuracy better than 361 m, 95% of cases

Vodafone Field Trials

- 2-phase competitive field trials in 2002 & 2003
 - 8 10 network-based E-CGI location technology companies from around the world
 - Blind test protocol used by Vodafone
 - Dortmund, Germany; urban, suburban, & rural areas
 - London, UK; urban & suburban areas
 - Off-line & real-time testing
- Polaris technology evaluated as having the <u>best</u> performance in both trial phases (>70% over closest competitor)
- Polaris system was the only competitor to meet stringent marketing requirements

Dense Urban -- London

Used only single NMR, rather than block of 50-55 NMRs typically observed in E-911 call interval

- Accuracy better than 38 m, 67% of cases
- Accuracy better than 88 m, 95% of cases

Triton PCS: Live Network OET Tests (IS-136)

OET test area

- Spartanburg & Greenville, SC
- Suburban, rural, & highway
- 60 sites, 150 sectors (cells)

OET testing protocol

- End-to-end system testing with real-time processing
- Mix of moving & stationary location fixes
- Position response time within 30 seconds per location fix
- MAHO data for position estimation received over E12 interface
- Ground truth determined from GPS receiver
- Nokia and Ericsson handsets used
- Test results show Wireless Location Signatures is compliant with FCC's E-911 Phase II accuracy requirements

Triton PCS: OET Test Summary

Network OET Test Results -- Suburban

Network OET Test Results -- Suburban

Accuracy Test Summary

Example Application: Network Optimization

Traffic Density Map

Color coding is number of calls in 100 X 100 m bins during sample hour

Dropped Call Map

Color coding is number of dropped calls in 100 X 100 m bins during sample hour

Conclusions

- Compliant with E-911 Phase II accuracy requirements for GSM & IS-136
- Economical for service providers and public safety community
- Immediate coverage for entire installed customer base
- High reliability/availability of location system
- Deploy as standalone or hybrid system
- Support network optimization and location based services